Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
Kybernetika, Tome 48 (2012) no. 4, pp. 637-689.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Integral functionals based on convex normal integrands are minimized subject to finitely many moment constraints. The integrands are finite on the positive and infinite on the negative numbers, strictly convex but not necessarily differentiable. The minimization is viewed as a primal problem and studied together with a dual one in the framework of convex duality. The effective domain of the value function is described by a conic core, a modification of the earlier concept of convex core. Minimizers and generalized minimizers are explicitly constructed from solutions of modified dual problems, not assuming the primal constraint qualification. A generalized Pythagorean identity is presented using Bregman distance and a correction term for lack of essential smoothness in integrands. Results are applied to minimization of Bregman distances. Existence of a generalized dual solution is established whenever the dual value is finite, assuming the dual constraint qualification. Examples of ‘irregular’ situations are included, pointing to the limitations of generality of certain key results.
Classification : 49J53, 49K30, 62B10, 65K10, 90C46, 94A17
Keywords: maximum entropy; moment constraint; generalized primal/dual solutions; normal integrand; minimizing sequence; convex duality; Bregman projection; conic core; generalized exponential family; inference principles
@article{KYB_2012__48_4_a3,
     author = {Csisz\'ar, Imre and Mat\'u\v{s}, Franti\v{s}ek},
     title = {Generalized minimizers of convex integral functionals, {Bregman} distance, {Pythagorean} identities},
     journal = {Kybernetika},
     pages = {637--689},
     publisher = {mathdoc},
     volume = {48},
     number = {4},
     year = {2012},
     mrnumber = {3013394},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_4_a3/}
}
TY  - JOUR
AU  - Csiszár, Imre
AU  - Matúš, František
TI  - Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
JO  - Kybernetika
PY  - 2012
SP  - 637
EP  - 689
VL  - 48
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_4_a3/
LA  - en
ID  - KYB_2012__48_4_a3
ER  - 
%0 Journal Article
%A Csiszár, Imre
%A Matúš, František
%T Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities
%J Kybernetika
%D 2012
%P 637-689
%V 48
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_4_a3/
%G en
%F KYB_2012__48_4_a3
Csiszár, Imre; Matúš, František. Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities. Kybernetika, Tome 48 (2012) no. 4, pp. 637-689. http://geodesic.mathdoc.fr/item/KYB_2012__48_4_a3/