On a problem by Schweizer and Sklar
Kybernetika, Tome 48 (2012) no. 2, pp. 287-293.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a representation of the class of all $n$-dimensional copulas such that, for a fixed $m\in \mathbb N$, $2\le m n$, all their $m$-dimensional margins are equal to the independence copula. Such an investigation originated from an open problem posed by Schweizer and Sklar.
Classification : 60E05, 62E10
Keywords: copulas; distributions with given marginals; Frèchet–Hoeffding bounds; partial mutual independence
@article{KYB_2012__48_2_a7,
     author = {Durante, Fabrizio},
     title = {On a problem by {Schweizer} and {Sklar}},
     journal = {Kybernetika},
     pages = {287--293},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2012},
     mrnumber = {2954326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a7/}
}
TY  - JOUR
AU  - Durante, Fabrizio
TI  - On a problem by Schweizer and Sklar
JO  - Kybernetika
PY  - 2012
SP  - 287
EP  - 293
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a7/
LA  - en
ID  - KYB_2012__48_2_a7
ER  - 
%0 Journal Article
%A Durante, Fabrizio
%T On a problem by Schweizer and Sklar
%J Kybernetika
%D 2012
%P 287-293
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a7/
%G en
%F KYB_2012__48_2_a7
Durante, Fabrizio. On a problem by Schweizer and Sklar. Kybernetika, Tome 48 (2012) no. 2, pp. 287-293. http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a7/