Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix
Kybernetika, Tome 48 (2012) no. 2, pp. 309-328
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Eigenvectors of a fuzzy matrix correspond to stable states of a complex discrete-events system, characterized by a given transition matrix and fuzzy state vectors. Description of the eigenspace (set of all eigenvectors) for matrices in max-min or max-drast fuzzy algebra was presented in previous papers. In this paper the eigenspace of a three-dimensional fuzzy matrix in max-Łukasiewicz algebra is investigated. Necessary and sufficient conditions are shown under which the eigenspace restricted to increasing eigenvectors of a given matrix is non-empty, and the structure of the increasing eigenspace is described. Complete characterization of the general eigenspace structure for arbitrary three-dimensional fuzzy matrix, using simultaneous row and column permutations of the matrix, is presented in Sections 4 and 5, with numerical examples in Section 6.
Classification :
62A10, 93E12
Keywords: Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
Keywords: Łukasiewicz triangular norm; max-t fuzzy algebra; eigenproblem; monotone eigenvector
@article{KYB_2012__48_2_a10,
author = {Rashid, Imran and Gavalec, Martin and Sergeev, Serge\u{i}},
title = {Eigenspace of a three-dimensional {max-{\L}ukasiewicz} fuzzy matrix},
journal = {Kybernetika},
pages = {309--328},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2012},
mrnumber = {2954329},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a10/}
}
TY - JOUR AU - Rashid, Imran AU - Gavalec, Martin AU - Sergeev, Sergeĭ TI - Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix JO - Kybernetika PY - 2012 SP - 309 EP - 328 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a10/ LA - en ID - KYB_2012__48_2_a10 ER -
Rashid, Imran; Gavalec, Martin; Sergeev, Sergeĭ. Eigenspace of a three-dimensional max-Łukasiewicz fuzzy matrix. Kybernetika, Tome 48 (2012) no. 2, pp. 309-328. http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a10/