The existence of limit cycle for perturbed bilinear systems
Kybernetika, Tome 48 (2012) no. 2, pp. 177-189
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
@article{KYB_2012__48_2_a0,
author = {Damak, Hanen and Hammami, Mohamed Ali and Sun, Yeong-Jeu},
title = {The existence of limit cycle for perturbed bilinear systems},
journal = {Kybernetika},
pages = {177--189},
publisher = {mathdoc},
volume = {48},
number = {2},
year = {2012},
mrnumber = {2954318},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/}
}
TY - JOUR AU - Damak, Hanen AU - Hammami, Mohamed Ali AU - Sun, Yeong-Jeu TI - The existence of limit cycle for perturbed bilinear systems JO - Kybernetika PY - 2012 SP - 177 EP - 189 VL - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/ LA - en ID - KYB_2012__48_2_a0 ER -
Damak, Hanen; Hammami, Mohamed Ali; Sun, Yeong-Jeu. The existence of limit cycle for perturbed bilinear systems. Kybernetika, Tome 48 (2012) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/