The existence of limit cycle for perturbed bilinear systems
Kybernetika, Tome 48 (2012) no. 2, pp. 177-189.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the feedback control for a class of bilinear control systems with a small parameter is proposed to guarantee the existence of limit cycle. We use the perturbation method of seeking in approximate solution as a finite Taylor expansion of the exact solution. This perturbation method is to exploit the “smallness” of the perturbation parameter $\varepsilon$ to construct an approximate periodic solution. Furthermore, some simulation results are given to illustrate the existence of a limit cycle for this class of nonlinear control systems.
Classification : 37G15, 70K05
Keywords: perturbed bilinear system; feedback control; limit cycle
@article{KYB_2012__48_2_a0,
     author = {Damak, Hanen and Hammami, Mohamed Ali and Sun, Yeong-Jeu},
     title = {The existence of limit cycle for perturbed bilinear systems},
     journal = {Kybernetika},
     pages = {177--189},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2012},
     mrnumber = {2954318},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/}
}
TY  - JOUR
AU  - Damak, Hanen
AU  - Hammami, Mohamed Ali
AU  - Sun, Yeong-Jeu
TI  - The existence of limit cycle for perturbed bilinear systems
JO  - Kybernetika
PY  - 2012
SP  - 177
EP  - 189
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/
LA  - en
ID  - KYB_2012__48_2_a0
ER  - 
%0 Journal Article
%A Damak, Hanen
%A Hammami, Mohamed Ali
%A Sun, Yeong-Jeu
%T The existence of limit cycle for perturbed bilinear systems
%J Kybernetika
%D 2012
%P 177-189
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/
%G en
%F KYB_2012__48_2_a0
Damak, Hanen; Hammami, Mohamed Ali; Sun, Yeong-Jeu. The existence of limit cycle for perturbed bilinear systems. Kybernetika, Tome 48 (2012) no. 2, pp. 177-189. http://geodesic.mathdoc.fr/item/KYB_2012__48_2_a0/