Computing minimum norm solution of a specific constrained convex nonlinear problem
Kybernetika, Tome 48 (2012) no. 1, pp. 123-129.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The characterization of the solution set of a convex constrained problem is a well-known attempt. In this paper, we focus on the minimum norm solution of a specific constrained convex nonlinear problem and reformulate this problem as an unconstrained minimization problem by using the alternative theorem.The objective function of this problem is piecewise quadratic, convex, and once differentiable. To minimize this function, we will provide a new Newton-type method with global convergence properties.
Classification : 90C05, 90C51
Keywords: solution set of convex problems; alternative theorems; minimum norm solution; residual vector
@article{KYB_2012__48_1_a6,
     author = {Ketabchi, Saeed and Moosaei, Hossein},
     title = {Computing minimum norm solution of a specific constrained convex nonlinear problem},
     journal = {Kybernetika},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {48},
     number = {1},
     year = {2012},
     mrnumber = {2932931},
     zbl = {1244.90181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_1_a6/}
}
TY  - JOUR
AU  - Ketabchi, Saeed
AU  - Moosaei, Hossein
TI  - Computing minimum norm solution of a specific constrained convex nonlinear problem
JO  - Kybernetika
PY  - 2012
SP  - 123
EP  - 129
VL  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_1_a6/
LA  - en
ID  - KYB_2012__48_1_a6
ER  - 
%0 Journal Article
%A Ketabchi, Saeed
%A Moosaei, Hossein
%T Computing minimum norm solution of a specific constrained convex nonlinear problem
%J Kybernetika
%D 2012
%P 123-129
%V 48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_1_a6/
%G en
%F KYB_2012__48_1_a6
Ketabchi, Saeed; Moosaei, Hossein. Computing minimum norm solution of a specific constrained convex nonlinear problem. Kybernetika, Tome 48 (2012) no. 1, pp. 123-129. http://geodesic.mathdoc.fr/item/KYB_2012__48_1_a6/