Randomized goodness of fit tests
Kybernetika, Tome 47 (2011) no. 6, pp. 814-839.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classical goodness of fit tests are no longer asymptotically distributional free if parameters are estimated. For a parametric model and the maximum likelihood estimator the empirical processes with estimated parameters is asymptotically transformed into a time transformed Brownian bridge by adding an independent Gaussian process that is suitably constructed. This randomization makes the classical tests distributional free. The power under local alternatives is investigated. Computer simulations compare the randomized Cramér-von Mises test with tests specially designed for location-scale families, such as the Shapiro-Wilk and the Shenton-Bowman test for normality and with the Epps-Pulley test for exponentiality.
Classification : 62E20, 64E17
Keywords: goodness of fit tests with estimated parameters; Kolmogorov–Smirnov test; Cramér–von Mises test; randomization
@article{KYB_2011__47_6_a1,
     author = {Liese, Friedrich and Liu, Bing},
     title = {Randomized goodness of fit tests},
     journal = {Kybernetika},
     pages = {814--839},
     publisher = {mathdoc},
     volume = {47},
     number = {6},
     year = {2011},
     mrnumber = {2907844},
     zbl = {06047588},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011__47_6_a1/}
}
TY  - JOUR
AU  - Liese, Friedrich
AU  - Liu, Bing
TI  - Randomized goodness of fit tests
JO  - Kybernetika
PY  - 2011
SP  - 814
EP  - 839
VL  - 47
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2011__47_6_a1/
LA  - en
ID  - KYB_2011__47_6_a1
ER  - 
%0 Journal Article
%A Liese, Friedrich
%A Liu, Bing
%T Randomized goodness of fit tests
%J Kybernetika
%D 2011
%P 814-839
%V 47
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2011__47_6_a1/
%G en
%F KYB_2011__47_6_a1
Liese, Friedrich; Liu, Bing. Randomized goodness of fit tests. Kybernetika, Tome 47 (2011) no. 6, pp. 814-839. http://geodesic.mathdoc.fr/item/KYB_2011__47_6_a1/