On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
Kybernetika, Tome 47 (2011) no. 5, pp. 715-721.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the two-sided eigenproblem $A\otimes x=\lambda\otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.
Classification : 15A22, 15A80, 91A46, 93C65
Keywords: extremal algebra; tropical algebra; generalized eigenproblem
@article{KYB_2011__47_5_a3,
     author = {Sergeev, Serge\u{i}},
     title = {On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum},
     journal = {Kybernetika},
     pages = {715--721},
     publisher = {mathdoc},
     volume = {47},
     number = {5},
     year = {2011},
     mrnumber = {2850458},
     zbl = {1248.15023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/}
}
TY  - JOUR
AU  - Sergeev, Sergeĭ
TI  - On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
JO  - Kybernetika
PY  - 2011
SP  - 715
EP  - 721
VL  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/
LA  - en
ID  - KYB_2011__47_5_a3
ER  - 
%0 Journal Article
%A Sergeev, Sergeĭ
%T On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
%J Kybernetika
%D 2011
%P 715-721
%V 47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/
%G en
%F KYB_2011__47_5_a3
Sergeev, Sergeĭ. On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum. Kybernetika, Tome 47 (2011) no. 5, pp. 715-721. http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/