On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum
Kybernetika, Tome 47 (2011) no. 5, pp. 715-721
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the two-sided eigenproblem $A\otimes x=\lambda\otimes B\otimes x$ over max algebra. It is shown that any finite system of real intervals and points can be represented as spectrum of this eigenproblem.
Classification :
15A22, 15A80, 91A46, 93C65
Keywords: extremal algebra; tropical algebra; generalized eigenproblem
Keywords: extremal algebra; tropical algebra; generalized eigenproblem
@article{KYB_2011__47_5_a3,
author = {Sergeev, Serge\u{i}},
title = {On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum},
journal = {Kybernetika},
pages = {715--721},
publisher = {mathdoc},
volume = {47},
number = {5},
year = {2011},
mrnumber = {2850458},
zbl = {1248.15023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/}
}
Sergeev, Sergeĭ. On the problem $Ax=\lambda Bx$ in max algebra: every system of intervals is a spectrum. Kybernetika, Tome 47 (2011) no. 5, pp. 715-721. http://geodesic.mathdoc.fr/item/KYB_2011__47_5_a3/