Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems
Kybernetika, Tome 47 (2011) no. 4, pp. 644-652.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper deals with the three-point boundary value problem for the nonlinear singularly perturbed second-order systems. Especially, we focus on an analysis of the solutions in the right endpoint of considered interval from an appearance of the boundary layer point of view. We use the method of lower and upper solutions combined with analysis of the integral equation associated with the class of nonlinear systems considered here.
Classification : 34A34, 34A40, 34B10, 34E15, 93C10
Keywords: singularly perturbed systems; three--point boundary value problem; method of lower and upper solutions; controller
@article{KYB_2011__47_4_a9,
     author = {Vrabel, Robert},
     title = {Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems},
     journal = {Kybernetika},
     pages = {644--652},
     publisher = {mathdoc},
     volume = {47},
     number = {4},
     year = {2011},
     mrnumber = {2884866},
     zbl = {1227.93080},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011__47_4_a9/}
}
TY  - JOUR
AU  - Vrabel, Robert
TI  - Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems
JO  - Kybernetika
PY  - 2011
SP  - 644
EP  - 652
VL  - 47
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2011__47_4_a9/
LA  - en
ID  - KYB_2011__47_4_a9
ER  - 
%0 Journal Article
%A Vrabel, Robert
%T Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems
%J Kybernetika
%D 2011
%P 644-652
%V 47
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2011__47_4_a9/
%G en
%F KYB_2011__47_4_a9
Vrabel, Robert. Boundary layer phenomenon for three -point boundary value problem for the nonlinear singularly perturbed systems. Kybernetika, Tome 47 (2011) no. 4, pp. 644-652. http://geodesic.mathdoc.fr/item/KYB_2011__47_4_a9/