Particle filter with adaptive sample size
Kybernetika, Tome 47 (2011) no. 3, pp. 385-400.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper deals with the particle filter in state estimation of a discrete-time nonlinear non-Gaussian system. The goal of the paper is to design a sample size adaptation technique to guarantee a quality of a filtering estimate produced by the particle filter which is an approximation of the true filtering estimate. The quality is given by a difference between the approximate filtering estimate and the true filtering estimate. The estimate may be a point estimate or a probability density function estimate. The proposed technique adapts the sample size to keep the difference within pre-specified bounds with a pre-specified probability. The particle filter with the proposed sample size adaptation technique is illustrated in a numerical example.
Keywords: stochastic systems; nonlinear filtering; particle filter; sample size; adaptation
@article{KYB_2011__47_3_a5,
     author = {Straka, Ond\v{r}ej and \v{S}imandl, Miroslav},
     title = {Particle filter with adaptive sample size},
     journal = {Kybernetika},
     pages = {385--400},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2011},
     mrnumber = {2857196},
     zbl = {1221.93261},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2011__47_3_a5/}
}
TY  - JOUR
AU  - Straka, Ondřej
AU  - Šimandl, Miroslav
TI  - Particle filter with adaptive sample size
JO  - Kybernetika
PY  - 2011
SP  - 385
EP  - 400
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2011__47_3_a5/
LA  - en
ID  - KYB_2011__47_3_a5
ER  - 
%0 Journal Article
%A Straka, Ondřej
%A Šimandl, Miroslav
%T Particle filter with adaptive sample size
%J Kybernetika
%D 2011
%P 385-400
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2011__47_3_a5/
%G en
%F KYB_2011__47_3_a5
Straka, Ondřej; Šimandl, Miroslav. Particle filter with adaptive sample size. Kybernetika, Tome 47 (2011) no. 3, pp. 385-400. http://geodesic.mathdoc.fr/item/KYB_2011__47_3_a5/