On fuzzification of the notion of quantaloid
Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee$-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
Classification : 03E72, 06F07, 16G99, 18A40, 18B99
Keywords: many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
@article{KYB_2010__46_6_a8,
     author = {Solovyov, Sergey A.},
     title = {On fuzzification of the notion of quantaloid},
     journal = {Kybernetika},
     pages = {1025--1048},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2010},
     mrnumber = {2797425},
     zbl = {1218.06012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/}
}
TY  - JOUR
AU  - Solovyov, Sergey A.
TI  - On fuzzification of the notion of quantaloid
JO  - Kybernetika
PY  - 2010
SP  - 1025
EP  - 1048
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/
LA  - en
ID  - KYB_2010__46_6_a8
ER  - 
%0 Journal Article
%A Solovyov, Sergey A.
%T On fuzzification of the notion of quantaloid
%J Kybernetika
%D 2010
%P 1025-1048
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/
%G en
%F KYB_2010__46_6_a8
Solovyov, Sergey A. On fuzzification of the notion of quantaloid. Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/