On fuzzification of the notion of quantaloid
Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper considers a fuzzification of the notion of quantaloid of K. I. Rosenthal, which replaces enrichment in the category of $\bigvee$-semilattices with that in the category of modules over a given unital commutative quantale. The resulting structures are called quantale algebroids. We show that their constitute a monadic category and prove a representation theorem for them using the notion of nucleus adjusted for our needs. We also characterize the lattice of nuclei on a free quantale algebroid. At the end of the paper, we prove that the category of quantale algebroids has a monoidal structure given by tensor product.
Classification :
03E72, 06F07, 16G99, 18A40, 18B99
Keywords: many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
Keywords: many-value topology; monadic category; nucleus; quantale; quantale algebra; quantale algebroid; quantale module; quantaloid; tensor product
@article{KYB_2010__46_6_a8,
author = {Solovyov, Sergey A.},
title = {On fuzzification of the notion of quantaloid},
journal = {Kybernetika},
pages = {1025--1048},
publisher = {mathdoc},
volume = {46},
number = {6},
year = {2010},
mrnumber = {2797425},
zbl = {1218.06012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/}
}
Solovyov, Sergey A. On fuzzification of the notion of quantaloid. Kybernetika, Tome 46 (2010) no. 6, pp. 1025-1048. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a8/