Quantum logics and bivariable functions
Kybernetika, Tome 46 (2010) no. 6, pp. 982-995
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
New approach to characterization of orthomodular lattices by means of special types of bivariable functions $G$ is suggested. Under special marginal conditions a bivariable function $G$ can operate as, for example, infimum measure, supremum measure or symmetric difference measure for two elements of an orthomodular lattice.
Classification :
03G10, 03G12, 03G25, 03H05
Keywords: finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements
Keywords: finite atomistic quantum logic; orthomodular lattice; conditional state; s-map; d-map; bivariable functions; modeling infimum measure; supremum measure; simultaneous measurements
@article{KYB_2010__46_6_a5,
author = {Drobn\'a, Eva and N\'an\'asiov\'a, O\'lga and Val\'a\v{s}kov\'a, \'Lubica},
title = {Quantum logics and bivariable functions},
journal = {Kybernetika},
pages = {982--995},
publisher = {mathdoc},
volume = {46},
number = {6},
year = {2010},
mrnumber = {2797422},
zbl = {1229.03054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a5/}
}
Drobná, Eva; Nánásiová, Oĺga; Valášková, Ĺubica. Quantum logics and bivariable functions. Kybernetika, Tome 46 (2010) no. 6, pp. 982-995. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a5/