Formula for unbiased bases
Kybernetika, Tome 46 (2010) no. 6, pp. 1122-1137.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \geq 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.
Classification : 81R05, 81R10, 81R15, 81R50
Keywords: mutually unbiased bases; Weyl pairs; phase states; Lie algebras
@article{KYB_2010__46_6_a15,
     author = {Kibler, Maurice R.},
     title = {Formula for unbiased bases},
     journal = {Kybernetika},
     pages = {1122--1137},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2010},
     mrnumber = {2797432},
     zbl = {1209.81049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a15/}
}
TY  - JOUR
AU  - Kibler, Maurice R.
TI  - Formula for unbiased bases
JO  - Kybernetika
PY  - 2010
SP  - 1122
EP  - 1137
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a15/
LA  - en
ID  - KYB_2010__46_6_a15
ER  - 
%0 Journal Article
%A Kibler, Maurice R.
%T Formula for unbiased bases
%J Kybernetika
%D 2010
%P 1122-1137
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a15/
%G en
%F KYB_2010__46_6_a15
Kibler, Maurice R. Formula for unbiased bases. Kybernetika, Tome 46 (2010) no. 6, pp. 1122-1137. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a15/