Quantum Bochner theorems and incompatible observables
Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.
Classification : 60B15, 81S30
Keywords: Bochner's Theorem; multiplier-nonnegative-definiteness; Wigner quasidensities; Pauli matrices
@article{KYB_2010__46_6_a10,
     author = {Hudson, Robin L.},
     title = {Quantum {Bochner} theorems and incompatible observables},
     journal = {Kybernetika},
     pages = {1061--1068},
     publisher = {mathdoc},
     volume = {46},
     number = {6},
     year = {2010},
     mrnumber = {2797427},
     zbl = {1219.81175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/}
}
TY  - JOUR
AU  - Hudson, Robin L.
TI  - Quantum Bochner theorems and incompatible observables
JO  - Kybernetika
PY  - 2010
SP  - 1061
EP  - 1068
VL  - 46
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/
LA  - en
ID  - KYB_2010__46_6_a10
ER  - 
%0 Journal Article
%A Hudson, Robin L.
%T Quantum Bochner theorems and incompatible observables
%J Kybernetika
%D 2010
%P 1061-1068
%V 46
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/
%G en
%F KYB_2010__46_6_a10
Hudson, Robin L. Quantum Bochner theorems and incompatible observables. Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/