Quantum Bochner theorems and incompatible observables
Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A quantum version of Bochner's theorem characterising Fourier transforms of probability measures on locally compact Abelian groups gives a characterisation of the Fourier transforms of Wigner quasi-joint distributions of position and momentum. An analogous quantum Bochner theorem characterises quasi-joint distributions of components of spin. In both cases quantum states in which a true distribution exists are characterised by the intersection of two convex sets. This may be described explicitly in the spin case as the intersection of the Bloch sphere with a regular tetrahedron whose edges touch the sphere.
Classification :
60B15, 81S30
Keywords: Bochner's Theorem; multiplier-nonnegative-definiteness; Wigner quasidensities; Pauli matrices
Keywords: Bochner's Theorem; multiplier-nonnegative-definiteness; Wigner quasidensities; Pauli matrices
@article{KYB_2010__46_6_a10,
author = {Hudson, Robin L.},
title = {Quantum {Bochner} theorems and incompatible observables},
journal = {Kybernetika},
pages = {1061--1068},
publisher = {mathdoc},
volume = {46},
number = {6},
year = {2010},
mrnumber = {2797427},
zbl = {1219.81175},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/}
}
Hudson, Robin L. Quantum Bochner theorems and incompatible observables. Kybernetika, Tome 46 (2010) no. 6, pp. 1061-1068. http://geodesic.mathdoc.fr/item/KYB_2010__46_6_a10/