On second–order Taylor expansion of critical values
Kybernetika, Tome 46 (2010) no. 3, pp. 472-487
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Studying a critical value function $\varphi$ in parametric nonlinear programming, we recall conditions guaranteeing that $\varphi$ is a $C^{1,1}$ function and derive second order Taylor expansion formulas including second-order terms in the form of certain generalized derivatives of $D \varphi$. Several specializations and applications are discussed. These results are understood as supplements to the well–developed theory of first- and second-order directional differentiability of the optimal value function in parametric optimization.
Classification :
49J52, 49K40, 65K05, 65K10, 90C30, 90C31
Keywords: Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^{1, 1}$ optimization
Keywords: Taylor expansion; parametric programs; critical value function; generalized derivatives; envelope theorems; Lipschitz stability; $C^{1, 1}$ optimization
@article{KYB_2010__46_3_a11,
author = {B\"utikofer, Stephan and Klatte, Diethard and Kummer, Bernd},
title = {On second{\textendash}order {Taylor} expansion of critical values},
journal = {Kybernetika},
pages = {472--487},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {2010},
mrnumber = {2676084},
zbl = {1197.65062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_3_a11/}
}
Bütikofer, Stephan; Klatte, Diethard; Kummer, Bernd. On second–order Taylor expansion of critical values. Kybernetika, Tome 46 (2010) no. 3, pp. 472-487. http://geodesic.mathdoc.fr/item/KYB_2010__46_3_a11/