New estimates and tests of independence in semiparametric copula models
Kybernetika, Tome 46 (2010) no. 1, pp. 178-201
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce new estimates and tests of independence in copula models with unknown margins using $\phi$-divergences and the duality technique. The asymptotic laws of the estimates and the test statistics are established both when the parameter is an interior or a boundary value of the parameter space. Simulation results show that the choice of $\chi^2$-divergence has good properties in terms of efficiency-robustness.
Classification :
62F03, 62F10, 62F12, 62G05, 62G10, 62H05, 62H12, 62H15
Keywords: dependence function; multivariate rank statistics; semiparametric inference; copulas; boundary; divergences; duality
Keywords: dependence function; multivariate rank statistics; semiparametric inference; copulas; boundary; divergences; duality
@article{KYB_2010__46_1_a10,
author = {Bouzebda, Salim and Keziou, Amor},
title = {New estimates and tests of independence in semiparametric copula models},
journal = {Kybernetika},
pages = {178--201},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2010},
mrnumber = {2666901},
zbl = {1187.62067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2010__46_1_a10/}
}
Bouzebda, Salim; Keziou, Amor. New estimates and tests of independence in semiparametric copula models. Kybernetika, Tome 46 (2010) no. 1, pp. 178-201. http://geodesic.mathdoc.fr/item/KYB_2010__46_1_a10/