On a variant of the local projection method stable in the SUPG norm
Kybernetika, Tome 45 (2009) no. 4, pp. 634-645
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider the local projection finite element method for the discretization of a scalar convection-diffusion equation with a divergence-free convection field. We introduce a new fluctuation operator which is defined using an orthogonal $L^2$ projection with respect to a weighted $L^2$ inner product. We prove that the bilinear form corresponding to the discrete problem satisfies an inf-sup condition with respect to the SUPG norm and derive an error estimate for the discrete solution.
Classification :
65N12, 65N15, 65N30
Keywords: finite element method; convection-diffusion equation; stability; inf-sup condition; stabilization; SUPG method; local projection method; error estimates
Keywords: finite element method; convection-diffusion equation; stability; inf-sup condition; stabilization; SUPG method; local projection method; error estimates
@article{KYB_2009__45_4_a7,
author = {Knobloch, Petr},
title = {On a variant of the local projection method stable in the {SUPG} norm},
journal = {Kybernetika},
pages = {634--645},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2009},
mrnumber = {2588629},
zbl = {1191.65155},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2009__45_4_a7/}
}
Knobloch, Petr. On a variant of the local projection method stable in the SUPG norm. Kybernetika, Tome 45 (2009) no. 4, pp. 634-645. http://geodesic.mathdoc.fr/item/KYB_2009__45_4_a7/