Absorption in stochastic epidemics
Kybernetika, Tome 45 (2009) no. 3, pp. 458-474.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A two dimensional stochastic differential equation is suggested as a stochastic model for the Kermack–McKendrick epidemics. Its strong (weak) existence and uniqueness and absorption properties are investigated. The examples presented in Section 5 are meant to illustrate possible different asymptotics of a solution to the equation.
Classification : 37N25, 60H10, 92D25, 92D30
Keywords: SIR epidemic models; stochastic epidemic models; stochastic differential equation; strong solution; weak solution; absorption; Kermack–McKendrick model
@article{KYB_2009__45_3_a6,
     author = {\v{S}t\v{e}p\'an, Josef and Stan\v{e}k, Jakub},
     title = {Absorption in stochastic epidemics},
     journal = {Kybernetika},
     pages = {458--474},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2009},
     mrnumber = {2543134},
     zbl = {1165.92319},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009__45_3_a6/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Staněk, Jakub
TI  - Absorption in stochastic epidemics
JO  - Kybernetika
PY  - 2009
SP  - 458
EP  - 474
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2009__45_3_a6/
LA  - en
ID  - KYB_2009__45_3_a6
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Staněk, Jakub
%T Absorption in stochastic epidemics
%J Kybernetika
%D 2009
%P 458-474
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2009__45_3_a6/
%G en
%F KYB_2009__45_3_a6
Štěpán, Josef; Staněk, Jakub. Absorption in stochastic epidemics. Kybernetika, Tome 45 (2009) no. 3, pp. 458-474. http://geodesic.mathdoc.fr/item/KYB_2009__45_3_a6/