Markov bases of conditional independence models for permutations
Kybernetika, Tome 45 (2009) no. 2, pp. 249-260.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The L-decomposable and the bi-decomposable models are two families of distributions on the set $S_n$ of all permutations of the first $n$ positive integers. Both of these models are characterized by collections of conditional independence relations. We first compute a Markov basis for the L-decomposable model, then give partial results about the Markov basis of the bi-decomposable model. Using these Markov bases, we show that not all bi-decomposable distributions can be approximated arbitrarily well by strictly positive bi-decomposable distributions.
Classification : 60C05, 60J99, 62E10, 62H05
Keywords: conditional independence; Markov basis; closure of exponential family; permutation; L-decomposable
@article{KYB_2009__45_2_a3,
     author = {Csisz\'ar, Vill\H{o}},
     title = {Markov bases of conditional independence models for permutations},
     journal = {Kybernetika},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2009},
     mrnumber = {2518150},
     zbl = {1165.62007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2009__45_2_a3/}
}
TY  - JOUR
AU  - Csiszár, Villő
TI  - Markov bases of conditional independence models for permutations
JO  - Kybernetika
PY  - 2009
SP  - 249
EP  - 260
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2009__45_2_a3/
LA  - en
ID  - KYB_2009__45_2_a3
ER  - 
%0 Journal Article
%A Csiszár, Villő
%T Markov bases of conditional independence models for permutations
%J Kybernetika
%D 2009
%P 249-260
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2009__45_2_a3/
%G en
%F KYB_2009__45_2_a3
Csiszár, Villő. Markov bases of conditional independence models for permutations. Kybernetika, Tome 45 (2009) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/KYB_2009__45_2_a3/