Stability estimating in optimal stopping problem
Kybernetika, Tome 44 (2008) no. 3, pp. 400-415.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider the optimal stopping problem for a discrete-time Markov process on a Borel state space $X$. It is supposed that an unknown transition probability $p(\cdot |x)$, $x\in X$, is approximated by the transition probability $\widetilde{p}(\cdot |x)$, $x\in X$, and the stopping rule $\widetilde{\tau }_*$, optimal for $\widetilde{p}$, is applied to the process governed by $p$. We found an upper bound for the difference between the total expected cost, resulting when applying $\widetilde{\tau }_*$, and the minimal total expected cost. The bound given is a constant times $\displaystyle \sup \nolimits _{x\in X}\Vert p(\cdot |x)-\widetilde{p}(\cdot |x)\Vert $, where $\Vert \cdot \Vert $ is the total variation norm.
Classification : 60G40, 60J10
Keywords: discrete-time Markov process; optimal stopping rule; stability index; total variation metric; contractive operator; optimal asset selling
@article{KYB_2008__44_3_a9,
     author = {Zaitseva, Elena},
     title = {Stability estimating in optimal stopping problem},
     journal = {Kybernetika},
     pages = {400--415},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {2008},
     mrnumber = {2436040},
     zbl = {1154.60326},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2008__44_3_a9/}
}
TY  - JOUR
AU  - Zaitseva, Elena
TI  - Stability estimating in optimal stopping problem
JO  - Kybernetika
PY  - 2008
SP  - 400
EP  - 415
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2008__44_3_a9/
LA  - en
ID  - KYB_2008__44_3_a9
ER  - 
%0 Journal Article
%A Zaitseva, Elena
%T Stability estimating in optimal stopping problem
%J Kybernetika
%D 2008
%P 400-415
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2008__44_3_a9/
%G en
%F KYB_2008__44_3_a9
Zaitseva, Elena. Stability estimating in optimal stopping problem. Kybernetika, Tome 44 (2008) no. 3, pp. 400-415. http://geodesic.mathdoc.fr/item/KYB_2008__44_3_a9/