Extensions of the parametric families of divergences used in statistical inference
Kybernetika, Tome 44 (2008) no. 1, pp. 95-112
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We propose a simple method of construction of new families of $\phi$%-divergences. This method called convex standardization is applicable to convex and concave functions $\psi(t)$ twice continuously differentiable in a neighborhood of $t=1$ with nonzero second derivative at the point $t=1$. Using this method we introduce several extensions of the LeCam, power, $% \chi^a$ and Matusita divergences. The extended families are shown to connect smoothly these divergences with the Kullback divergence or they connect various pairs of these particular divergences themselves. We investigate also the metric properties of divergences from these extended families.
Classification :
62B05, 62B10, 62H30
Keywords: divergences; metric divergences; families of $f$-divergences
Keywords: divergences; metric divergences; families of $f$-divergences
@article{KYB_2008__44_1_a7,
author = {K\r{u}s, V\'aclav and Morales, Domingo and Vajda, Igor},
title = {Extensions of the parametric families of divergences used in statistical inference},
journal = {Kybernetika},
pages = {95--112},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2008},
mrnumber = {2405058},
zbl = {1142.62002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2008__44_1_a7/}
}
TY - JOUR AU - Kůs, Václav AU - Morales, Domingo AU - Vajda, Igor TI - Extensions of the parametric families of divergences used in statistical inference JO - Kybernetika PY - 2008 SP - 95 EP - 112 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2008__44_1_a7/ LA - en ID - KYB_2008__44_1_a7 ER -
Kůs, Václav; Morales, Domingo; Vajda, Igor. Extensions of the parametric families of divergences used in statistical inference. Kybernetika, Tome 44 (2008) no. 1, pp. 95-112. http://geodesic.mathdoc.fr/item/KYB_2008__44_1_a7/