Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
Kybernetika, Tome 43 (2007) no. 6, pp. 797-806.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We propose a new rigorous numerical technique to prove the existence of symmetric homoclinic orbits in reversible dynamical systems. The essential idea is to calculate Melnikov functions by the exponential dichotomy and the rigorous numerics. The algorithm of our method is explained in detail by dividing into four steps. An application to a two dimensional reversible system is also treated and the existence of a symmetric homoclinic orbit is rigorously verified as an example.
Classification : 34C37, 34D09, 37C29, 37M20, 65G20, 65P30
Keywords: rigorous numerics; exponential dichotomy; homoclinic orbits
@article{KYB_2007__43_6_a4,
     author = {Hiraoka, Yasuaki},
     title = {Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems},
     journal = {Kybernetika},
     pages = {797--806},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2007},
     mrnumber = {2388394},
     zbl = {1138.65107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a4/}
}
TY  - JOUR
AU  - Hiraoka, Yasuaki
TI  - Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
JO  - Kybernetika
PY  - 2007
SP  - 797
EP  - 806
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a4/
LA  - en
ID  - KYB_2007__43_6_a4
ER  - 
%0 Journal Article
%A Hiraoka, Yasuaki
%T Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems
%J Kybernetika
%D 2007
%P 797-806
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a4/
%G en
%F KYB_2007__43_6_a4
Hiraoka, Yasuaki. Rigorous numerics for symmetric homoclinic orbits in reversible dynamical systems. Kybernetika, Tome 43 (2007) no. 6, pp. 797-806. http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a4/