Bifurcations for Turing instability without SO(2) symmetry
Kybernetika, Tome 43 (2007) no. 6, pp. 869-877.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the ${\rm SO(2)}$ symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.
Classification : 35B32, 35K20, 35K55, 37G40, 37L10, 37L20
Keywords: perturbed boundary conditions; imperfect pitchfork bifurcation; Turing instability
@article{KYB_2007__43_6_a10,
     author = {Ogawa, Toshiyuki and Okuda, Takashi},
     title = {Bifurcations for {Turing} instability without {SO(2)} symmetry},
     journal = {Kybernetika},
     pages = {869--877},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2007},
     mrnumber = {2388400},
     zbl = {1136.37042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a10/}
}
TY  - JOUR
AU  - Ogawa, Toshiyuki
AU  - Okuda, Takashi
TI  - Bifurcations for Turing instability without SO(2) symmetry
JO  - Kybernetika
PY  - 2007
SP  - 869
EP  - 877
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a10/
LA  - en
ID  - KYB_2007__43_6_a10
ER  - 
%0 Journal Article
%A Ogawa, Toshiyuki
%A Okuda, Takashi
%T Bifurcations for Turing instability without SO(2) symmetry
%J Kybernetika
%D 2007
%P 869-877
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a10/
%G en
%F KYB_2007__43_6_a10
Ogawa, Toshiyuki; Okuda, Takashi. Bifurcations for Turing instability without SO(2) symmetry. Kybernetika, Tome 43 (2007) no. 6, pp. 869-877. http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a10/