Effective computation of restoring force vector in finite element method
Kybernetika, Tome 43 (2007) no. 6, pp. 767-776.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce a new way of computation of time dependent partial differential equations using hybrid method FEM in space and FDM in time domain and explicit computational scheme. The key idea is quick transformation of standard basis functions into new simple basis functions. This new way is used for better computational efficiency. We explain this way of computation on an example of elastodynamic equation using quadrilateral elements. However, the method can be used for more types of elements and equations.
Classification : 35L15, 65M06, 65M60, 65Y20, 74B05, 74H15, 74S05, 74S20
Keywords: FEM; stiffness matrix; restoring force vector; computational efficiency of algorithm; e-invariants
@article{KYB_2007__43_6_a1,
     author = {Balazovjech, Martin and Halada, Ladislav},
     title = {Effective computation of restoring force vector in finite element method},
     journal = {Kybernetika},
     pages = {767--776},
     publisher = {mathdoc},
     volume = {43},
     number = {6},
     year = {2007},
     mrnumber = {2388391},
     zbl = {1138.65087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a1/}
}
TY  - JOUR
AU  - Balazovjech, Martin
AU  - Halada, Ladislav
TI  - Effective computation of restoring force vector in finite element method
JO  - Kybernetika
PY  - 2007
SP  - 767
EP  - 776
VL  - 43
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a1/
LA  - en
ID  - KYB_2007__43_6_a1
ER  - 
%0 Journal Article
%A Balazovjech, Martin
%A Halada, Ladislav
%T Effective computation of restoring force vector in finite element method
%J Kybernetika
%D 2007
%P 767-776
%V 43
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a1/
%G en
%F KYB_2007__43_6_a1
Balazovjech, Martin; Halada, Ladislav. Effective computation of restoring force vector in finite element method. Kybernetika, Tome 43 (2007) no. 6, pp. 767-776. http://geodesic.mathdoc.fr/item/KYB_2007__43_6_a1/