On the structure of continuous uninorms
Kybernetika, Tome 43 (2007) no. 2, pp. 183-196.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Uninorms were introduced by Yager and Rybalov [13] as a generalization of triangular norms and conorms. We ask about properties of increasing, associative, continuous binary operation $U$ in the unit interval with the neutral element $e\in [0,1]$. If operation $U$ is continuous, then $e=0$ or $e=1$. So, we consider operations which are continuous in the open unit square. As a result every associative, increasing binary operation with the neutral element $e\in (0,1)$, which is continuous in the open unit square may be given in $[0,1)^2$ or $(0,1]^2$ as an ordinal sum of a semigroup and a group. This group is isomorphic to the positive real numbers with multiplication. As a corollary we obtain the results of Hu, Li [7].
Classification : 03B52, 03E72, 06F05
Keywords: uninorms; continuity; $t$-norms; $t$-conorms; ordinal sum of semigroups
@article{KYB_2007__43_2_a5,
     author = {Dryga\'s, Pawe{\l}},
     title = {On the structure of continuous uninorms},
     journal = {Kybernetika},
     pages = {183--196},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2007},
     mrnumber = {2343394},
     zbl = {1132.03349},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_2_a5/}
}
TY  - JOUR
AU  - Drygaś, Paweł
TI  - On the structure of continuous uninorms
JO  - Kybernetika
PY  - 2007
SP  - 183
EP  - 196
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_2_a5/
LA  - en
ID  - KYB_2007__43_2_a5
ER  - 
%0 Journal Article
%A Drygaś, Paweł
%T On the structure of continuous uninorms
%J Kybernetika
%D 2007
%P 183-196
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_2_a5/
%G en
%F KYB_2007__43_2_a5
Drygaś, Paweł. On the structure of continuous uninorms. Kybernetika, Tome 43 (2007) no. 2, pp. 183-196. http://geodesic.mathdoc.fr/item/KYB_2007__43_2_a5/