A new family of trivariate proper quasi-copulas
Kybernetika, Tome 43 (2007) no. 1, pp. 75-85
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
@article{KYB_2007__43_1_a5,
author = {\'Ubeda-Flores, Manuel},
title = {A new family of trivariate proper quasi-copulas},
journal = {Kybernetika},
pages = {75--85},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2007},
mrnumber = {2343332},
zbl = {1131.62048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/}
}
Úbeda-Flores, Manuel. A new family of trivariate proper quasi-copulas. Kybernetika, Tome 43 (2007) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/