A new family of trivariate proper quasi-copulas
Kybernetika, Tome 43 (2007) no. 1, pp. 75-85.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
Classification : 60E05, 62H05
Keywords: copula; mass distribution; quasi-copula
@article{KYB_2007__43_1_a5,
     author = {\'Ubeda-Flores, Manuel},
     title = {A new family of trivariate proper quasi-copulas},
     journal = {Kybernetika},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2343332},
     zbl = {1131.62048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/}
}
TY  - JOUR
AU  - Úbeda-Flores, Manuel
TI  - A new family of trivariate proper quasi-copulas
JO  - Kybernetika
PY  - 2007
SP  - 75
EP  - 85
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/
LA  - en
ID  - KYB_2007__43_1_a5
ER  - 
%0 Journal Article
%A Úbeda-Flores, Manuel
%T A new family of trivariate proper quasi-copulas
%J Kybernetika
%D 2007
%P 75-85
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/
%G en
%F KYB_2007__43_1_a5
Úbeda-Flores, Manuel. A new family of trivariate proper quasi-copulas. Kybernetika, Tome 43 (2007) no. 1, pp. 75-85. http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a5/