$M$-estimation in nonlinear regression for longitudinal data
Kybernetika, Tome 43 (2007) no. 1, pp. 61-74
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
Classification :
60G55, 62F10, 62F12, 62M10
Keywords: $M$-estimation; nonlinear regression; longitudinal data
Keywords: $M$-estimation; nonlinear regression; longitudinal data
@article{KYB_2007__43_1_a4,
author = {Ors\'akov\'a, Martina},
title = {$M$-estimation in nonlinear regression for longitudinal data},
journal = {Kybernetika},
pages = {61--74},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2007},
mrnumber = {2343331},
zbl = {1252.62069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/}
}
Orsáková, Martina. $M$-estimation in nonlinear regression for longitudinal data. Kybernetika, Tome 43 (2007) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/