$M$-estimation in nonlinear regression for longitudinal data
Kybernetika, Tome 43 (2007) no. 1, pp. 61-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The longitudinal regression model $Z_i^j=m(\theta _0,{\mathbb{X}}_i(T_i^j))+ \varepsilon _i^j,$ where $Z_i^j$ is the $j$th measurement of the $i$th subject at random time $T_i^j$, $m$ is the regression function, ${\mathbb{X}}_i(T_i^j)$ is a predictable covariate process observed at time $T_i^j$ and $\varepsilon _i^j$ is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth $M$-estimator of unknown parameter $\theta _0$.
Classification : 60G55, 62F10, 62F12, 62M10
Keywords: $M$-estimation; nonlinear regression; longitudinal data
@article{KYB_2007__43_1_a4,
     author = {Ors\'akov\'a, Martina},
     title = {$M$-estimation in nonlinear regression for longitudinal data},
     journal = {Kybernetika},
     pages = {61--74},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2343331},
     zbl = {1252.62069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/}
}
TY  - JOUR
AU  - Orsáková, Martina
TI  - $M$-estimation in nonlinear regression for longitudinal data
JO  - Kybernetika
PY  - 2007
SP  - 61
EP  - 74
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/
LA  - en
ID  - KYB_2007__43_1_a4
ER  - 
%0 Journal Article
%A Orsáková, Martina
%T $M$-estimation in nonlinear regression for longitudinal data
%J Kybernetika
%D 2007
%P 61-74
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/
%G en
%F KYB_2007__43_1_a4
Orsáková, Martina. $M$-estimation in nonlinear regression for longitudinal data. Kybernetika, Tome 43 (2007) no. 1, pp. 61-74. http://geodesic.mathdoc.fr/item/KYB_2007__43_1_a4/