Simplification of the generalized state equations
Kybernetika, Tome 42 (2006) no. 5, pp. 617-628.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The paper studies the problem of lowering the orders of input derivatives in nonlinear generalized state equations via generalized coordinate transformation. An alternative, computation-oriented proof is presented for the theorem, originally proved by Delaleau and Respondek, giving necessary and sufficient conditions for existence of such a transformation, in terms of commutativity of certain vector fields. Moreover, the dual conditions in terms of 1-forms have been derived, allowing to calculate the new generalized state coordinates in a simpler way. The result is illustrated with an example, originally given by Delaleau and Respondek (see [2]), but solved in an alternative way.
Classification : 93B11, 93B17, 93B29, 93C10
Keywords: generalized dynamics; generalized state transformations; input derivatives; classical state; prolonged vector fields
@article{KYB_2006__42_5_a6,
     author = {Mullari, Tanel and Kotta, \"Ulle},
     title = {Simplification of the generalized state equations},
     journal = {Kybernetika},
     pages = {617--628},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2283509},
     zbl = {1249.93094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a6/}
}
TY  - JOUR
AU  - Mullari, Tanel
AU  - Kotta, Ülle
TI  - Simplification of the generalized state equations
JO  - Kybernetika
PY  - 2006
SP  - 617
EP  - 628
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a6/
LA  - en
ID  - KYB_2006__42_5_a6
ER  - 
%0 Journal Article
%A Mullari, Tanel
%A Kotta, Ülle
%T Simplification of the generalized state equations
%J Kybernetika
%D 2006
%P 617-628
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a6/
%G en
%F KYB_2006__42_5_a6
Mullari, Tanel; Kotta, Ülle. Simplification of the generalized state equations. Kybernetika, Tome 42 (2006) no. 5, pp. 617-628. http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a6/