Maximizing multi–information
Kybernetika, Tome 42 (2006) no. 5, pp. 517-538
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Stochastic interdependence of a probability distribution on a product space is measured by its Kullback–Leibler distance from the exponential family of product distributions (called multi-information). Here we investigate low-dimensional exponential families that contain the maximizers of stochastic interdependence in their closure. Based on a detailed description of the structure of probability distributions with globally maximal multi-information we obtain our main result: The exponential family of pure pair-interactions contains all global maximizers of the multi-information in its closure.
Classification :
60B10, 82C32, 92B20, 94A15
Keywords: multi-information; exponential family; relative entropy; pair- interaction; infomax principle; Boltzmann machine; neural networks
Keywords: multi-information; exponential family; relative entropy; pair- interaction; infomax principle; Boltzmann machine; neural networks
@article{KYB_2006__42_5_a0,
author = {Ay, Nihat and Knauf, Andreas},
title = {Maximizing multi{\textendash}information},
journal = {Kybernetika},
pages = {517--538},
publisher = {mathdoc},
volume = {42},
number = {5},
year = {2006},
mrnumber = {2283503},
zbl = {1249.82011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a0/}
}
Ay, Nihat; Knauf, Andreas. Maximizing multi–information. Kybernetika, Tome 42 (2006) no. 5, pp. 517-538. http://geodesic.mathdoc.fr/item/KYB_2006__42_5_a0/