$S$-measures, $T$-measures and distinguished classes of fuzzy measures
Kybernetika, Tome 42 (2006) no. 3, pp. 367-378.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.
Classification : 03E72, 28E10
Keywords: fuzzy measure; t-norm; T-conorm; subadditivity; belief
@article{KYB_2006__42_3_a8,
     author = {Struk, Peter and Stup\v{n}anov\'a, Andrea},
     title = {$S$-measures, $T$-measures and distinguished classes of fuzzy measures},
     journal = {Kybernetika},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2006},
     mrnumber = {2253395},
     zbl = {1249.28031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a8/}
}
TY  - JOUR
AU  - Struk, Peter
AU  - Stupňanová, Andrea
TI  - $S$-measures, $T$-measures and distinguished classes of fuzzy measures
JO  - Kybernetika
PY  - 2006
SP  - 367
EP  - 378
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a8/
LA  - en
ID  - KYB_2006__42_3_a8
ER  - 
%0 Journal Article
%A Struk, Peter
%A Stupňanová, Andrea
%T $S$-measures, $T$-measures and distinguished classes of fuzzy measures
%J Kybernetika
%D 2006
%P 367-378
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a8/
%G en
%F KYB_2006__42_3_a8
Struk, Peter; Stupňanová, Andrea. $S$-measures, $T$-measures and distinguished classes of fuzzy measures. Kybernetika, Tome 42 (2006) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a8/