A contour view on uninorm properties
Kybernetika, Tome 42 (2006) no. 3, pp. 303-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Any given increasing $[0,1]^2\rightarrow [0,1]$ function is completely determined by its contour lines. In this paper we show how each individual uninorm property can be translated into a property of contour lines. In particular, we describe commutativity in terms of orthosymmetry and we link associativity to the portation law and the exchange principle. Contrapositivity and rotation invariance are used to characterize uninorms that have a continuous contour line.
Classification : 03B52, 03E72, 06F05, 26B40
Keywords: uninorm; Contour line; Orthosymmetry; Portation law; Exchange principle; Contrapositive symmetry; Rotation invariance; Self quasi-inverse property
@article{KYB_2006__42_3_a4,
     author = {Maes, Koen C. and De Baets, Bernard},
     title = {A contour view on uninorm properties},
     journal = {Kybernetika},
     pages = {303--318},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2006},
     mrnumber = {2253391},
     zbl = {1249.26022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a4/}
}
TY  - JOUR
AU  - Maes, Koen C.
AU  - De Baets, Bernard
TI  - A contour view on uninorm properties
JO  - Kybernetika
PY  - 2006
SP  - 303
EP  - 318
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a4/
LA  - en
ID  - KYB_2006__42_3_a4
ER  - 
%0 Journal Article
%A Maes, Koen C.
%A De Baets, Bernard
%T A contour view on uninorm properties
%J Kybernetika
%D 2006
%P 303-318
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a4/
%G en
%F KYB_2006__42_3_a4
Maes, Koen C.; De Baets, Bernard. A contour view on uninorm properties. Kybernetika, Tome 42 (2006) no. 3, pp. 303-318. http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a4/