Semicopulas: characterizations and applicability
Kybernetika, Tome 42 (2006) no. 3, pp. 287-302
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
Classification :
03E72, 26B35, 60E05, 60E15
Keywords: semicopula; quasi-copula; Lipschitz condition; aggregation operator
Keywords: semicopula; quasi-copula; Lipschitz condition; aggregation operator
@article{KYB_2006__42_3_a3,
author = {Durante, Fabrizio and Quesada-Molina, Jos\'e and Sempi, Carlo},
title = {Semicopulas: characterizations and applicability},
journal = {Kybernetika},
pages = {287--302},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2006},
mrnumber = {2253390},
zbl = {1249.60016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/}
}
Durante, Fabrizio; Quesada-Molina, José; Sempi, Carlo. Semicopulas: characterizations and applicability. Kybernetika, Tome 42 (2006) no. 3, pp. 287-302. http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/