Semicopulas: characterizations and applicability
Kybernetika, Tome 42 (2006) no. 3, pp. 287-302.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows us to introduce a new concept of depedence between two random variables. The notion of multivariate semicopula is given and two applications in the theory of fuzzy measures and stochastic processes are given.
Classification : 03E72, 26B35, 60E05, 60E15
Keywords: semicopula; quasi-copula; Lipschitz condition; aggregation operator
@article{KYB_2006__42_3_a3,
     author = {Durante, Fabrizio and Quesada-Molina, Jos\'e and Sempi, Carlo},
     title = {Semicopulas: characterizations and applicability},
     journal = {Kybernetika},
     pages = {287--302},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2006},
     mrnumber = {2253390},
     zbl = {1249.60016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/}
}
TY  - JOUR
AU  - Durante, Fabrizio
AU  - Quesada-Molina, José
AU  - Sempi, Carlo
TI  - Semicopulas: characterizations and applicability
JO  - Kybernetika
PY  - 2006
SP  - 287
EP  - 302
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/
LA  - en
ID  - KYB_2006__42_3_a3
ER  - 
%0 Journal Article
%A Durante, Fabrizio
%A Quesada-Molina, José
%A Sempi, Carlo
%T Semicopulas: characterizations and applicability
%J Kybernetika
%D 2006
%P 287-302
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/
%G en
%F KYB_2006__42_3_a3
Durante, Fabrizio; Quesada-Molina, José; Sempi, Carlo. Semicopulas: characterizations and applicability. Kybernetika, Tome 42 (2006) no. 3, pp. 287-302. http://geodesic.mathdoc.fr/item/KYB_2006__42_3_a3/