The least trimmed squares. Part II: $\sqrt{n}$-consistency
Kybernetika, Tome 42 (2006) no. 2, pp. 181-202
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
$\sqrt{n}$-consistency of the least trimmed squares estimator is proved under general conditions. The proof is based on deriving the asymptotic linearity of normal equations.
Classification :
62F12, 62F35, 62F40, 62J05
Keywords: robust regression; the least trimmed squares; $\sqrt{n}$-consistency; asymptotic normality
Keywords: robust regression; the least trimmed squares; $\sqrt{n}$-consistency; asymptotic normality
@article{KYB_2006__42_2_a4,
author = {V{\'\i}\v{s}ek, Jan \'Amos},
title = {The least trimmed squares. {Part} {II:} $\sqrt{n}$-consistency},
journal = {Kybernetika},
pages = {181--202},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2006},
mrnumber = {2241784},
zbl = {1248.62034},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2006__42_2_a4/}
}
Víšek, Jan Ámos. The least trimmed squares. Part II: $\sqrt{n}$-consistency. Kybernetika, Tome 42 (2006) no. 2, pp. 181-202. http://geodesic.mathdoc.fr/item/KYB_2006__42_2_a4/