The color-balanced spanning tree problem
Kybernetika, Tome 41 (2005) no. 4, p. [539]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Suppose a graph $G=(V,E)$ whose edges are partitioned into $p$ disjoint categories (colors) is given. In the color-balanced spanning tree problem a spanning tree is looked for that minimizes the variability in the number of edges from different categories. We show that polynomiality of this problem depends on the number $p$ of categories and present some polynomial algorithm.
Classification :
05C05, 05C15, 05C85, 90C27
Keywords: spanning tree; matroids; algorithms; NP-completeness
Keywords: spanning tree; matroids; algorithms; NP-completeness
@article{KYB_2005__41_4_a7,
author = {Bere\v{z}n\'y, \v{S}tefan and Lacko, Vladim{\'\i}r},
title = {The color-balanced spanning tree problem},
journal = {Kybernetika},
pages = {[539]},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2005},
mrnumber = {2180362},
zbl = {1249.05053},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a7/}
}
Berežný, Štefan; Lacko, Vladimír. The color-balanced spanning tree problem. Kybernetika, Tome 41 (2005) no. 4, p. [539]. http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a7/