Comparing the distributions of sums of independent random vectors
Kybernetika, Tome 41 (2005) no. 4, p. [519].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2\infty $, $E|\tilde{X}_1|^{k+2}\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
Classification : 60F99, 60G50
Keywords: sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function
@article{KYB_2005__41_4_a5,
     author = {Gordienko, Evgueni},
     title = {Comparing the distributions of sums of independent random vectors},
     journal = {Kybernetika},
     pages = {[519]},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2005},
     mrnumber = {2180360},
     zbl = {1249.60086},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/}
}
TY  - JOUR
AU  - Gordienko, Evgueni
TI  - Comparing the distributions of sums of independent random vectors
JO  - Kybernetika
PY  - 2005
SP  - [519]
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/
LA  - en
ID  - KYB_2005__41_4_a5
ER  - 
%0 Journal Article
%A Gordienko, Evgueni
%T Comparing the distributions of sums of independent random vectors
%J Kybernetika
%D 2005
%P [519]
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/
%G en
%F KYB_2005__41_4_a5
Gordienko, Evgueni. Comparing the distributions of sums of independent random vectors. Kybernetika, Tome 41 (2005) no. 4, p. [519]. http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/