Comparing the distributions of sums of independent random vectors
Kybernetika, Tome 41 (2005) no. 4, p. [519]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(X_n, n\ge 1), (\tilde{X}_n, n\ge 1)$ be two sequences of i.i.d. random vectors with values in ${\mathbb{R}}^k$ and $S_n=X_1+\cdots +X_n$, $\tilde{S}_n=\tilde{X}_1+\cdots +\tilde{X}_n$, $n\ge 1$. Assuming that $EX_1=E\tilde{X}_1$, $E|X_1|^2\infty $, $E|\tilde{X}_1|^{k+2}\infty $ and the existence of a density of $\tilde{X}_1$ satisfying the certain conditions we prove the following inequalities: \[v(S_n,\tilde{S}_n)\le c\;\max \big \lbrace v(X_1,\tilde{X}_1), \zeta _2(X_1,\tilde{X}_1)\big \rbrace , \quad n=1,2,\dots ,\] where $v$ and $\zeta _2$ are the total variation and Zolotarev’s metrics, respectively.
Classification :
60F99, 60G50
Keywords: sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function
Keywords: sum of random vectors; the total variation distance; bound of closeness; Zolotarev’s metric; characteristic function
@article{KYB_2005__41_4_a5,
author = {Gordienko, Evgueni},
title = {Comparing the distributions of sums of independent random vectors},
journal = {Kybernetika},
pages = {[519]},
publisher = {mathdoc},
volume = {41},
number = {4},
year = {2005},
mrnumber = {2180360},
zbl = {1249.60086},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/}
}
Gordienko, Evgueni. Comparing the distributions of sums of independent random vectors. Kybernetika, Tome 41 (2005) no. 4, p. [519]. http://geodesic.mathdoc.fr/item/KYB_2005__41_4_a5/