Fuzzy distances
Kybernetika, Tome 41 (2005) no. 3, p. [375].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail.
Classification : 03B52, 03E72, 11J99, 47H10, 54A40, 54E35, 54H25
Keywords: fuzzy metric; fuzzy distance; fuzzy metric space; fuzzy contraction
@article{KYB_2005__41_3_a7,
     author = {Bedn\'a\v{r}, Josef},
     title = {Fuzzy distances},
     journal = {Kybernetika},
     pages = {[375]},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2005},
     mrnumber = {2181425},
     zbl = {1249.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/}
}
TY  - JOUR
AU  - Bednář, Josef
TI  - Fuzzy distances
JO  - Kybernetika
PY  - 2005
SP  - [375]
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/
LA  - en
ID  - KYB_2005__41_3_a7
ER  - 
%0 Journal Article
%A Bednář, Josef
%T Fuzzy distances
%J Kybernetika
%D 2005
%P [375]
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/
%G en
%F KYB_2005__41_3_a7
Bednář, Josef. Fuzzy distances. Kybernetika, Tome 41 (2005) no. 3, p. [375]. http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/