Fuzzy distances
Kybernetika, Tome 41 (2005) no. 3, p. [375]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail.
Classification :
03B52, 03E72, 11J99, 47H10, 54A40, 54E35, 54H25
Keywords: fuzzy metric; fuzzy distance; fuzzy metric space; fuzzy contraction
Keywords: fuzzy metric; fuzzy distance; fuzzy metric space; fuzzy contraction
@article{KYB_2005__41_3_a7,
author = {Bedn\'a\v{r}, Josef},
title = {Fuzzy distances},
journal = {Kybernetika},
pages = {[375]},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2005},
mrnumber = {2181425},
zbl = {1249.54013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/}
}
Bednář, Josef. Fuzzy distances. Kybernetika, Tome 41 (2005) no. 3, p. [375]. http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a7/