Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
Kybernetika, Tome 41 (2005) no. 3, p. [329]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).
Classification :
26B99, 60E05
Keywords: copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal
Keywords: copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal
@article{KYB_2005__41_3_a4,
author = {Klement, Erich Peter and Koles\'arov\'a, Anna},
title = {Extension to copulas and quasi-copulas as special $1${-Lipschitz} aggregation operators},
journal = {Kybernetika},
pages = {[329]},
publisher = {mathdoc},
volume = {41},
number = {3},
year = {2005},
mrnumber = {2181422},
zbl = {1249.60017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/}
}
TY - JOUR AU - Klement, Erich Peter AU - Kolesárová, Anna TI - Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators JO - Kybernetika PY - 2005 SP - [329] VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/ LA - en ID - KYB_2005__41_3_a4 ER -
Klement, Erich Peter; Kolesárová, Anna. Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators. Kybernetika, Tome 41 (2005) no. 3, p. [329]. http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/