Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
Kybernetika, Tome 41 (2005) no. 3, p. [329].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Smallest and greatest $1$-Lipschitz aggregation operators with given diagonal section, opposite diagonal section, and with graphs passing through a single point of the unit cube, respectively, are determined. These results are used to find smallest and greatest copulas and quasi-copulas with these properties (provided they exist).
Classification : 26B99, 60E05
Keywords: copula; quasi-copula; $1$-Lipschitz aggregation operator; diagonal
@article{KYB_2005__41_3_a4,
     author = {Klement, Erich Peter and Koles\'arov\'a, Anna},
     title = {Extension to copulas and quasi-copulas as special $1${-Lipschitz} aggregation operators},
     journal = {Kybernetika},
     pages = {[329]},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2005},
     mrnumber = {2181422},
     zbl = {1249.60017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/}
}
TY  - JOUR
AU  - Klement, Erich Peter
AU  - Kolesárová, Anna
TI  - Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
JO  - Kybernetika
PY  - 2005
SP  - [329]
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/
LA  - en
ID  - KYB_2005__41_3_a4
ER  - 
%0 Journal Article
%A Klement, Erich Peter
%A Kolesárová, Anna
%T Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators
%J Kybernetika
%D 2005
%P [329]
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/
%G en
%F KYB_2005__41_3_a4
Klement, Erich Peter; Kolesárová, Anna. Extension to copulas and quasi-copulas as special $1$-Lipschitz aggregation operators. Kybernetika, Tome 41 (2005) no. 3, p. [329]. http://geodesic.mathdoc.fr/item/KYB_2005__41_3_a4/