Generalized homogeneous, prelattice and MV-effect algebras
Kybernetika, Tome 41 (2005) no. 2, p. [129].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study unbounded versions of effect algebras. We show a necessary and sufficient condition, when lattice operations of a such generalized effect algebra $P$ are inherited under its embeding as a proper ideal with a special property and closed under the effect sum into an effect algebra. Further we introduce conditions for a generalized homogeneous, prelattice or MV-effect effect algebras. We prove that every prelattice generalized effect algebra $P$ is a union of generalized MV-effect algebras and every generalized homogeneous effect algebra is a union of its maximal sub-generalized effect algebras with hereditary Riesz decomposition property (blocks). Properties of sharp elements, the center and center of compatibility of $P$ are shown. We prove that on every generalized MV-effect algebra there is a bounded orthogonally additive measure.
Classification : 03B50, 03G12, 03G25, 06D35, 81P10
Keywords: effect algebra; generalized effect algebra; generalized MV- effect algebra; prelattice and homogeneous generalized effect algebra
@article{KYB_2005__41_2_a2,
     author = {Rie\v{c}anov\'a, Zdenka and Marinov\'a, Ivica},
     title = {Generalized homogeneous, prelattice and {MV-effect} algebras},
     journal = {Kybernetika},
     pages = {[129]},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2005},
     mrnumber = {2138764},
     zbl = {1249.03122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2005__41_2_a2/}
}
TY  - JOUR
AU  - Riečanová, Zdenka
AU  - Marinová, Ivica
TI  - Generalized homogeneous, prelattice and MV-effect algebras
JO  - Kybernetika
PY  - 2005
SP  - [129]
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2005__41_2_a2/
LA  - en
ID  - KYB_2005__41_2_a2
ER  - 
%0 Journal Article
%A Riečanová, Zdenka
%A Marinová, Ivica
%T Generalized homogeneous, prelattice and MV-effect algebras
%J Kybernetika
%D 2005
%P [129]
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2005__41_2_a2/
%G en
%F KYB_2005__41_2_a2
Riečanová, Zdenka; Marinová, Ivica. Generalized homogeneous, prelattice and MV-effect algebras. Kybernetika, Tome 41 (2005) no. 2, p. [129]. http://geodesic.mathdoc.fr/item/KYB_2005__41_2_a2/