Bound on extended $f$-divergences for a variety of classes
Kybernetika, Tome 40 (2004) no. 6, p. [745]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The concept of $f$-divergences was introduced by Csiszár in 1963 as measures of the ‘hardness’ of a testing problem depending on a convex real valued function $f$ on the interval $[0,\infty )$. The choice of this parameter $f$ can be adjusted so as to match the needs for specific applications. The definition and some of the most basic properties of $f$-divergences are given and the class of $\chi ^{\alpha }$-divergences is presented. Ostrowski’s inequality and a Trapezoid inequality are utilized in order to prove bounds for an extension of the set of $f$-divergences. The class of $\chi ^{\alpha }$-divergences and four further classes of $f$-divergences are used in order to investigate limitations and strengths of the inequalities derived.
Classification :
62B10, 62E99, 94A17
Keywords: $f$-divergences; bounds; Ostrowki’s inequality
Keywords: $f$-divergences; bounds; Ostrowki’s inequality
@article{KYB_2004__40_6_a7,
author = {Cerone, Pietro and Dragomir, Sever S. and \"Osterreicher, Ferdinand},
title = {Bound on extended $f$-divergences for a variety of classes},
journal = {Kybernetika},
pages = {[745]},
publisher = {mathdoc},
volume = {40},
number = {6},
year = {2004},
mrnumber = {2120395},
zbl = {1244.62005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a7/}
}
TY - JOUR AU - Cerone, Pietro AU - Dragomir, Sever S. AU - Österreicher, Ferdinand TI - Bound on extended $f$-divergences for a variety of classes JO - Kybernetika PY - 2004 SP - [745] VL - 40 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a7/ LA - en ID - KYB_2004__40_6_a7 ER -
Cerone, Pietro; Dragomir, Sever S.; Österreicher, Ferdinand. Bound on extended $f$-divergences for a variety of classes. Kybernetika, Tome 40 (2004) no. 6, p. [745]. http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a7/