On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
Kybernetika, Tome 40 (2004) no. 6, p. [691].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A non-linear AR(1) process is investigated when the associated white noise is positive. A criterion is derived for the geometric ergodicity of the process. Some explicit formulas are derived for one and two steps ahead extrapolation. Influence of parameter estimation on extrapolation is studied.
Classification : 62M10, 62M20
Keywords: geometric ergodicity; non-linear autoregression; least squares extrapolation
@article{KYB_2004__40_6_a3,
     author = {Zv\'ara, Petr},
     title = {On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes},
     journal = {Kybernetika},
     pages = {[691]},
     publisher = {mathdoc},
     volume = {40},
     number = {6},
     year = {2004},
     mrnumber = {2120391},
     zbl = {1248.62163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a3/}
}
TY  - JOUR
AU  - Zvára, Petr
TI  - On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
JO  - Kybernetika
PY  - 2004
SP  - [691]
VL  - 40
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a3/
LA  - en
ID  - KYB_2004__40_6_a3
ER  - 
%0 Journal Article
%A Zvára, Petr
%T On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes
%J Kybernetika
%D 2004
%P [691]
%V 40
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a3/
%G en
%F KYB_2004__40_6_a3
Zvára, Petr. On geometric ergodicity and prediction in nonnegative non-linear autoregressive processes. Kybernetika, Tome 40 (2004) no. 6, p. [691]. http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a3/