Approximation and estimation in Markov control processes under a discounted criterion
Kybernetika, Tome 40 (2004) no. 6, p. [681].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider a class of discrete-time Markov control processes with Borel state and action spaces, and $\Re ^{k}$-valued i.i.d. disturbances with unknown density $\rho .$ Supposing possibly unbounded costs, we combine suitable density estimation methods of $\rho $ with approximation procedures of the optimal cost function, to show the existence of a sequence $\lbrace \hat{f}_{t}\rbrace $ of minimizers converging to an optimal stationary policy $f_{\infty }.$
Classification : 90B05, 90B30, 90C40, 93E10
Keywords: Markov control processes; density estimation; discounted cost criterion
@article{KYB_2004__40_6_a2,
     author = {Minj\'arez-Sosa, J. Adolfo},
     title = {Approximation and estimation in {Markov} control processes under a discounted criterion},
     journal = {Kybernetika},
     pages = {[681]},
     publisher = {mathdoc},
     volume = {40},
     number = {6},
     year = {2004},
     mrnumber = {2120390},
     zbl = {1249.93163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a2/}
}
TY  - JOUR
AU  - Minjárez-Sosa, J. Adolfo
TI  - Approximation and estimation in Markov control processes under a discounted criterion
JO  - Kybernetika
PY  - 2004
SP  - [681]
VL  - 40
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a2/
LA  - en
ID  - KYB_2004__40_6_a2
ER  - 
%0 Journal Article
%A Minjárez-Sosa, J. Adolfo
%T Approximation and estimation in Markov control processes under a discounted criterion
%J Kybernetika
%D 2004
%P [681]
%V 40
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a2/
%G en
%F KYB_2004__40_6_a2
Minjárez-Sosa, J. Adolfo. Approximation and estimation in Markov control processes under a discounted criterion. Kybernetika, Tome 40 (2004) no. 6, p. [681]. http://geodesic.mathdoc.fr/item/KYB_2004__40_6_a2/