Modular atomic effect algebras and the existence of subadditive states
Kybernetika, Tome 40 (2004) no. 4, p. [459].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Lattice effect algebras generalize orthomodular lattices and $MV$-algebras. We describe all complete modular atomic effect algebras. This allows us to prove the existence of ordercontinuous subadditive states (probabilities) on them. For the separable noncomplete ones we show that the existence of a faithful probability is equivalent to the condition that their MacNeille complete modular effect algebra.
Classification : 03G12, 06F99, 81P10
Keywords: effect algebra; modular atomic effect algebra; subadditive state; MacNeille completion of an effect algebra
@article{KYB_2004__40_4_a3,
     author = {Rie\v{c}anov\'a, Zdenka},
     title = {Modular atomic effect algebras and the existence of subadditive states},
     journal = {Kybernetika},
     pages = {[459]},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2004},
     mrnumber = {2102364},
     zbl = {1249.03120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a3/}
}
TY  - JOUR
AU  - Riečanová, Zdenka
TI  - Modular atomic effect algebras and the existence of subadditive states
JO  - Kybernetika
PY  - 2004
SP  - [459]
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a3/
LA  - en
ID  - KYB_2004__40_4_a3
ER  - 
%0 Journal Article
%A Riečanová, Zdenka
%T Modular atomic effect algebras and the existence of subadditive states
%J Kybernetika
%D 2004
%P [459]
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a3/
%G en
%F KYB_2004__40_4_a3
Riečanová, Zdenka. Modular atomic effect algebras and the existence of subadditive states. Kybernetika, Tome 40 (2004) no. 4, p. [459]. http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a3/