$p$-symmetric bi-capacities
Kybernetika, Tome 40 (2004) no. 4, p. [421].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Bi-capacities have been recently introduced as a natural generalization of capacities (or fuzzy measures) when the underlying scale is bipolar. They allow to build more flexible models in decision making, although their complexity is of order $3^n$, instead of $2^n$ for fuzzy measures. In order to reduce the complexity, the paper proposes the notion of $p$-symmetric bi- capacities, in the same spirit as for $p$-symmetric fuzzy measures. The main idea is to partition the set of criteria (or states of nature, individuals,...) into subsets whose elements are all indifferent for the decision maker.
Classification : 03E72, 03H05, 28A12, 28C05, 28E05, 28E10
Keywords: bi-capacity; bipolar scales; $p$-symmetry
@article{KYB_2004__40_4_a1,
     author = {Miranda, Pedro and Grabisch, Michel},
     title = {$p$-symmetric bi-capacities},
     journal = {Kybernetika},
     pages = {[421]},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2004},
     mrnumber = {2102362},
     zbl = {1249.28021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a1/}
}
TY  - JOUR
AU  - Miranda, Pedro
AU  - Grabisch, Michel
TI  - $p$-symmetric bi-capacities
JO  - Kybernetika
PY  - 2004
SP  - [421]
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a1/
LA  - en
ID  - KYB_2004__40_4_a1
ER  - 
%0 Journal Article
%A Miranda, Pedro
%A Grabisch, Michel
%T $p$-symmetric bi-capacities
%J Kybernetika
%D 2004
%P [421]
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a1/
%G en
%F KYB_2004__40_4_a1
Miranda, Pedro; Grabisch, Michel. $p$-symmetric bi-capacities. Kybernetika, Tome 40 (2004) no. 4, p. [421]. http://geodesic.mathdoc.fr/item/KYB_2004__40_4_a1/