A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
Kybernetika, Tome 40 (2004) no. 2, p. [197].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.
Classification : 58A10, 93B25, 93C10, 93C55
Keywords: controlled invariance; dynamic state feedback; disturbance decoupling; differential forms
@article{KYB_2004__40_2_a2,
     author = {Aranda-Bricaire, Eduardo and Kotta, \"Ulle},
     title = {A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems},
     journal = {Kybernetika},
     pages = {[197]},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2004},
     mrnumber = {2069178},
     zbl = {1249.93120},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/}
}
TY  - JOUR
AU  - Aranda-Bricaire, Eduardo
AU  - Kotta, Ülle
TI  - A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
JO  - Kybernetika
PY  - 2004
SP  - [197]
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/
LA  - en
ID  - KYB_2004__40_2_a2
ER  - 
%0 Journal Article
%A Aranda-Bricaire, Eduardo
%A Kotta, Ülle
%T A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
%J Kybernetika
%D 2004
%P [197]
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/
%G en
%F KYB_2004__40_2_a2
Aranda-Bricaire, Eduardo; Kotta, Ülle. A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems. Kybernetika, Tome 40 (2004) no. 2, p. [197]. http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/