A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems
Kybernetika, Tome 40 (2004) no. 2, p. [197]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The notion of controlled invariance under quasi-static state feedback for discrete-time nonlinear systems has been recently introduced and shown to provide a geometric solution to the dynamic disturbance decoupling problem (DDDP). However, the proof relies heavily on the inversion (structure) algorithm. This paper presents an intrinsic, algorithm-independent, proof of the solvability conditions to the DDDP.
Classification :
58A10, 93B25, 93C10, 93C55
Keywords: controlled invariance; dynamic state feedback; disturbance decoupling; differential forms
Keywords: controlled invariance; dynamic state feedback; disturbance decoupling; differential forms
@article{KYB_2004__40_2_a2,
author = {Aranda-Bricaire, Eduardo and Kotta, \"Ulle},
title = {A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems},
journal = {Kybernetika},
pages = {[197]},
publisher = {mathdoc},
volume = {40},
number = {2},
year = {2004},
mrnumber = {2069178},
zbl = {1249.93120},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/}
}
TY - JOUR AU - Aranda-Bricaire, Eduardo AU - Kotta, Ülle TI - A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems JO - Kybernetika PY - 2004 SP - [197] VL - 40 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/ LA - en ID - KYB_2004__40_2_a2 ER -
Aranda-Bricaire, Eduardo; Kotta, Ülle. A geometric solution to the dynamic disturbance decoupling for discrete-time nonlinear systems. Kybernetika, Tome 40 (2004) no. 2, p. [197]. http://geodesic.mathdoc.fr/item/KYB_2004__40_2_a2/