A discussion on aggregation operators
Kybernetika, Tome 40 (2004) no. 1, p. [107].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators $\lbrace T_n\rbrace _n$, being each one of these $T_n$ the $n$-ary operator actually amalgamating information whenever the number of items to be aggregated is $n$. Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this paper we shall discuss these standard conditions, pointing out their respective relevance.
Classification : 03E72, 68T30, 68T37
Keywords: aggregation rules; logical connectives; fuzzy sets
@article{KYB_2004__40_1_a7,
     author = {G\'omez, Daniel and Montero, Javier},
     title = {A discussion on aggregation operators},
     journal = {Kybernetika},
     pages = {[107]},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2004},
     mrnumber = {2068601},
     zbl = {1249.68229},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a7/}
}
TY  - JOUR
AU  - Gómez, Daniel
AU  - Montero, Javier
TI  - A discussion on aggregation operators
JO  - Kybernetika
PY  - 2004
SP  - [107]
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a7/
LA  - en
ID  - KYB_2004__40_1_a7
ER  - 
%0 Journal Article
%A Gómez, Daniel
%A Montero, Javier
%T A discussion on aggregation operators
%J Kybernetika
%D 2004
%P [107]
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a7/
%G en
%F KYB_2004__40_1_a7
Gómez, Daniel; Montero, Javier. A discussion on aggregation operators. Kybernetika, Tome 40 (2004) no. 1, p. [107]. http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a7/