Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
Kybernetika, Tome 40 (2004) no. 1, p. [71]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations.
Classification :
03E72, 04A72, 06F05, 68T37, 91B08
Keywords: fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity
Keywords: fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity
@article{KYB_2004__40_1_a5,
author = {D{\'\i}az, Susana and Montes, Susana and De Baets, Bernard},
title = {Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum},
journal = {Kybernetika},
pages = {[71]},
publisher = {mathdoc},
volume = {40},
number = {1},
year = {2004},
mrnumber = {2068599},
zbl = {1249.91024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a5/}
}
TY - JOUR AU - Díaz, Susana AU - Montes, Susana AU - De Baets, Bernard TI - Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum JO - Kybernetika PY - 2004 SP - [71] VL - 40 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a5/ LA - en ID - KYB_2004__40_1_a5 ER -
Díaz, Susana; Montes, Susana; De Baets, Bernard. Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum. Kybernetika, Tome 40 (2004) no. 1, p. [71]. http://geodesic.mathdoc.fr/item/KYB_2004__40_1_a5/