A further investigation for Egoroff's theorem with respect to monotone set functions
Kybernetika, Tome 39 (2003) no. 6, p. [753].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.
Classification : 06F05, 15A06, 26E25, 28A10, 28A20, 37M99, 93B25
Keywords: non-additive measure; monotone set function; condition (E); Egoroff's theorem
@article{KYB_2003__39_6_a6,
     author = {Li, Jun},
     title = {A further investigation for {Egoroff's} theorem with respect to monotone set functions},
     journal = {Kybernetika},
     pages = {[753]},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2003},
     mrnumber = {2035649},
     zbl = {1249.93044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_6_a6/}
}
TY  - JOUR
AU  - Li, Jun
TI  - A further investigation for Egoroff's theorem with respect to monotone set functions
JO  - Kybernetika
PY  - 2003
SP  - [753]
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2003__39_6_a6/
LA  - en
ID  - KYB_2003__39_6_a6
ER  - 
%0 Journal Article
%A Li, Jun
%T A further investigation for Egoroff's theorem with respect to monotone set functions
%J Kybernetika
%D 2003
%P [753]
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2003__39_6_a6/
%G en
%F KYB_2003__39_6_a6
Li, Jun. A further investigation for Egoroff's theorem with respect to monotone set functions. Kybernetika, Tome 39 (2003) no. 6, p. [753]. http://geodesic.mathdoc.fr/item/KYB_2003__39_6_a6/