Non-monotoneous parallel iteration for solving convex feasibility problems
Kybernetika, Tome 39 (2003) no. 5, p. [547].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The method of projections onto convex sets to find a point in the intersection of a finite number of closed convex sets in an Euclidean space, sometimes leads to slow convergence of the constructed sequence. Such slow convergence depends both on the choice of the starting point and on the monotoneous behaviour of the usual algorithms. As there is normally no indication of how to choose the starting point in order to avoid slow convergence, we present in this paper a non-monotoneous parallel algorithm that may eliminate considerably the influence of the starting point.
Classification : 47H09, 47J25, 65B99, 65D18, 65K05, 65Y05, 90C25
Keywords: inherently parallel methods; convex feasibility problems; projections onto convex sets; slow convergence
@article{KYB_2003__39_5_a3,
     author = {Crombez, Gilbert},
     title = {Non-monotoneous parallel iteration for solving convex feasibility problems},
     journal = {Kybernetika},
     pages = {[547]},
     publisher = {mathdoc},
     volume = {39},
     number = {5},
     year = {2003},
     mrnumber = {2042340},
     zbl = {1249.65040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_5_a3/}
}
TY  - JOUR
AU  - Crombez, Gilbert
TI  - Non-monotoneous parallel iteration for solving convex feasibility problems
JO  - Kybernetika
PY  - 2003
SP  - [547]
VL  - 39
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2003__39_5_a3/
LA  - en
ID  - KYB_2003__39_5_a3
ER  - 
%0 Journal Article
%A Crombez, Gilbert
%T Non-monotoneous parallel iteration for solving convex feasibility problems
%J Kybernetika
%D 2003
%P [547]
%V 39
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2003__39_5_a3/
%G en
%F KYB_2003__39_5_a3
Crombez, Gilbert. Non-monotoneous parallel iteration for solving convex feasibility problems. Kybernetika, Tome 39 (2003) no. 5, p. [547]. http://geodesic.mathdoc.fr/item/KYB_2003__39_5_a3/