Continuous extension of order-preserving homogeneous maps
Kybernetika, Tome 39 (2003) no. 2, p. [205]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Maps $f$ defined on the interior of the standard non-negative cone $K$ in ${\mathbb{R}}^N$ which are both homogeneous of degree $1$ and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least one eigenvector in $K-\lbrace 0\rbrace $. In the case where the cycle time $\chi (f)$ of the original map does not exist, such eigenvectors must lie in $\partial {K}-\lbrace 0\rbrace $.
Classification :
06F05, 47H07, 47N70, 93B27, 93B28, 93C65
Keywords: discrete event systems; order-preserving homogeneous maps
Keywords: discrete event systems; order-preserving homogeneous maps
@article{KYB_2003__39_2_a9,
author = {Burbanks, Andrew D. and Sparrow, Colin T. and Nussbaum, Roger D.},
title = {Continuous extension of order-preserving homogeneous maps},
journal = {Kybernetika},
pages = {[205]},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2003},
mrnumber = {1996558},
zbl = {1249.93123},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a9/}
}
TY - JOUR AU - Burbanks, Andrew D. AU - Sparrow, Colin T. AU - Nussbaum, Roger D. TI - Continuous extension of order-preserving homogeneous maps JO - Kybernetika PY - 2003 SP - [205] VL - 39 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a9/ LA - en ID - KYB_2003__39_2_a9 ER -
Burbanks, Andrew D.; Sparrow, Colin T.; Nussbaum, Roger D. Continuous extension of order-preserving homogeneous maps. Kybernetika, Tome 39 (2003) no. 2, p. [205]. http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a9/