Iterates of maps which are non-expansive in Hilbert's projective metric
Kybernetika, Tome 39 (2003) no. 2, p. [193].

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The cycle time of an operator on $R^n$ gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert metric of the Denjoy-Wolff theorem.
Classification : 47H09, 53C60
Keywords: Hilbert geometry; Thompson’s part metric; non-expansive map; symmetric cone; cycle time; topical map; iterates
@article{KYB_2003__39_2_a8,
     author = {Gunawardena, Jeremy and Walsh, Cormac},
     title = {Iterates of maps which are non-expansive in {Hilbert's} projective metric},
     journal = {Kybernetika},
     pages = {[193]},
     publisher = {mathdoc},
     volume = {39},
     number = {2},
     year = {2003},
     mrnumber = {1996557},
     zbl = {1247.47030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a8/}
}
TY  - JOUR
AU  - Gunawardena, Jeremy
AU  - Walsh, Cormac
TI  - Iterates of maps which are non-expansive in Hilbert's projective metric
JO  - Kybernetika
PY  - 2003
SP  - [193]
VL  - 39
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a8/
LA  - en
ID  - KYB_2003__39_2_a8
ER  - 
%0 Journal Article
%A Gunawardena, Jeremy
%A Walsh, Cormac
%T Iterates of maps which are non-expansive in Hilbert's projective metric
%J Kybernetika
%D 2003
%P [193]
%V 39
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a8/
%G en
%F KYB_2003__39_2_a8
Gunawardena, Jeremy; Walsh, Cormac. Iterates of maps which are non-expansive in Hilbert's projective metric. Kybernetika, Tome 39 (2003) no. 2, p. [193]. http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a8/