Complex calculus of variations
Kybernetika, Tome 39 (2003) no. 2, p. [249]
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to ${\mathbf{C}}^n$ functions in ${\mathbf{C}}$. It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions to complex Hamilton-Jacobi equations, in particular by generalizing the Hopf-Lax formula.
Classification :
06F05, 30C70, 35F25, 49J10, 49L20, 93B27
Keywords: complex calculus of variation; Hamilton-Jacobi equations
Keywords: complex calculus of variation; Hamilton-Jacobi equations
@article{KYB_2003__39_2_a12,
author = {Gondran, Michel and Saade, Rita Hoblos},
title = {Complex calculus of variations},
journal = {Kybernetika},
pages = {[249]},
publisher = {mathdoc},
volume = {39},
number = {2},
year = {2003},
mrnumber = {1996561},
zbl = {1249.49002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a12/}
}
Gondran, Michel; Saade, Rita Hoblos. Complex calculus of variations. Kybernetika, Tome 39 (2003) no. 2, p. [249]. http://geodesic.mathdoc.fr/item/KYB_2003__39_2_a12/